

Status High Reliability Inverter

Presented by:

Russell Bonn, SNL

Jointly funded by DOE

Energy Storage Program

DER Electric Systems Integration

Photovoltaics

Contracts Awarded to: Xantrex, SatCon, GE

Why This Program Was Needed

- □ PV inverters are the most widely implemented DER inverters
- □ PV inverters thought to have a MTFF of five years
 - Drives up life-cycle-cost
 - Perpetrates the idea that inverters are untrustworthy
- □ PV inverters more mature than other technologies
 - Other technologies very likely to have same problems
- ☐ Quantity of PV inverters is significant (100's of thousands).

Essential features of the Inverter Initiative

- Boost quantity of inverters sold by developing a <u>common</u> <u>architecture</u>
 - Multiple markets (storage, PV, fuel cells, microturbines)
 - Multiple applications (grid-tied versus off grid)
- Incorporate <u>new technologies</u>
- Involve <u>major manufacturer(s)</u> for production
 - have best-business practices in place (ISO, quality & reliability, systems eng)
 - have resources to do job
 - have understanding of and access to mass production

Benefits of this Program

- ☐ Double inverter lifetime to > 10 years
- □ Transportable designs for
 - Multiple Technologies (Storage, Photovoltaics, & DER)
 - Multiple power sizes (kW to MW)
- □ Advanced designs fewer components
- New inverter technologies
 - DSP (digital signal processing)
 - Modular electronics and software
 - Advanced heat flow
- Expanded markets
- ☐ Increase public confidence

Criteria for Bid Evaluation

□ Corporative Capabilities

20 points

- Understanding of problem / Business Plan
 - market research (high sales volume essential for high reliability in low cost item)
 - sales & distribution plan
 - long term goal for this product
 - proposed product fit with market and company
- Resources (people, facilities)
- Structure (ISO, quality)
- □ Technical Proposal

50 points

- Understanding of causes of low reliability
- Proposed Architecture
 - fit to DER sources
 - ease of manufacturing
 - portability to other products
 - software modularity
- Proposed hardware
 - design
 - evidence that the design improves reliability
- Cost sharing

20 points

2

Market Research of the Bidders

Company	Metric (#,\$,MW)
Xantrex	63,000 inverters - 2002 152,000 inverters - 2006
SatCon	\$125 M - 2001 \$600 M - 2006
GE	30 MW (US) -2001 100 MW (US) - 2005

7

- Understanding of problem
 - market research exceptional, reflects PV experience
 - long term goal for this product PV, fuel cells, wind, storage
 - proposed product fit with market and company worlds largest manufacturer of photovoltaic inverters
- Resources
 - People extensive inverter & PV program & design
 - experience.
 - Facilities adequate
- Structure
 - ISO registered
 - Quality in-place
- ☐ Comment: An experienced PV company that has learned from past experience.

SatCon Corporate Capabilities

- Understanding of problem
 - market research very good
 - long term goal for this product single design for PV and fuel cell, tie to energy storage
 - proposed product fit with market and company fits with company business of manufacturing energy management products.

Resources

- People adequate
- Facilities extensive
- Structure
 - ISO registered
 - Quality in-place
- ☐ Comment: a fairly new technology company with good experience.

A

GE Corporate Capabilities

- Understanding of problem
 - market research the most extensive of all the proposals
 - long term goal for this product distribute systems through their Home Product and Service which provides service to new home construction.
 - proposed product fit with market and company already have extensive UPS business, anticipate fuel cell work.

Resources

- People extensive
- Facilities impressive
- Structure
 - ISO certified
 - Quality in-place
- ☐ Comment: A very large company with vast technical and financial resources. Will they go the distance????

Xantrex - 56%

GE - 50%

Satcon - 50%

2

Comparison of Approaches

Company	Storage	Control	Heat	Location	Novel idea
Xantrex	optional	DSP	Fan ?	outdoor	Single stage design
SatCon	No	DSP & ASIC	No fan	rooftop	Small parallel power stages
GE	optional	DSP	Fan ?	outdoor	Soft switching

Company	Product Distribution	Edge	Other applications	Fit	Size, input V
Xantrex	Exists	80,000 units in the field	Energy storage, Fuel cell after 2006	Core business	2.5/5kw, 48Vdc
SatCon	Team with module makers. Existing distribution network.	Design experience with 70° C operation	Fuel cell, Auto, energy storage	Logical extension of fuel cell product	2 kW, 150-300 Vdc
GE	GE Home Building Distribution, (Capitol Financial)	UPS experience	Energy storage, Fuel cell, UPS	Existing fuel cell, UPS, microturbine, wind	1-10 kW, 240-350 Vdc Sandia National Laboratories

Program Schedule (three phase program)

- ☐ Phase One Contracts awarded --- August 21
- ☐ Period of Performance --- 4 months
- ☐ Phase Two RFQ out --- Jan 2003
- □ Next Award --- March 2003

Inverter for Voltage Stabilization

Millennium Technologies

Voltage Stabilizer from Millennium Technologies

Program Evolution

- □ Issue: A desire to investigate the feasibility of using super-capacitors in place of batteries for certain applications.
- ☐ Opportunity: Honeywell microturbine did not offer seamless transfer. This was a target of opportunity.
- ☐ Original solution: Install super-capacitors on the Honeywell microturbine with upgraded power electronics.
- ☐ Unexpected event: Honeywell quit the business.
- □ New Solution: Develop from scratch, an inverter, that could demonstrate the feasibility of using super capacitors in place of batteries.

Program Status

- ☐ Inverter delivered to SNL on Nov 7, 2002.
- ☐ Testing to begin by Nov 18
- Tests Planned
 - Connect inverter to grid with battery storage and verify manufacturer's test data.
 - Maintain grid voltage by supplying surge current for start of a 20 hp motor with fan
 - Replace batteries with super capacitors and repeat tests
 - Document differences
 - Develop criteria for using super capacitors

